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A computational study is reported of the instability and growth of fingers for liquid
films driven over heterogeneous surfaces. Computations are performed using a varia-
tion of the precursor-film model, in which a disjoining pressure term is used to intro-
duce variation in the static contact angle, which in turn models surface heterogeneity.
The formulation is shown to yield results consistent with the Tanner–Hoffman–
Voinov dynamic contact angle formula for sufficiently small values of the precursor
film thickness. A modification of the disjoining pressure coefficient is introduced which
yields correct variation of dynamic contact angle for finite values of the precursor
film thickness. The fingering instability is examined both for cases with ordered strips
of different static contact angle and for cases with random variation in static contact
angle. Surface heterogeneity is characterized by strip width and amplitude of static
contact angle variation for the case with streamwise strips and by correlation length
and variance of the static contact angle variation from its mean value for the random
distribution case.

1. Introduction
The dynamics of driven liquid films is of interest in a wide variety of applications,

including surface coating, printing and cleaning processes, biofilm transport within
mammalian lungs, icing and aerodynamics of airplane wings, and reaction and
transport of surface-active materials. Fingering instability and subsequent formation
of rivulets from driven liquid films has consequently been the subject of a large
literature in the past two decades. Numerous experiments have been reported for
films driven by a body force, such as gravity or centrifugal force (Huppert 1982;
Melo, Joanny & Fauve 1989; de Bruyn 1992; Fraysse & Homsy 1994; Hocking,
Debler & Cook 1999; Johnson et al. 1999), or by a shear stress, such as wind shear or
Marangoni force (Cazabat et al. 1990; Thompson & Marrochello 1999). The stability
theory for finger growth on the driven film, originally developed by Troian et al.
(1989), has been expanded for cases with normal body force on the substrate surface
(Bertozzi & Brenner 1997), various film driving forces (Kataoka & Troian 1997), weak
nonlinear effects (Kalliadasis 2000), weak inertial effects (López, Miksis & Bankoff
1997), presence of van der Waals forces (Golovin, Rubinstein & Pismen 2001), and
non-uniform ambient film thickness (Davis & Troian 2003). Nonlinear computations
have been reported that investigate the subsequent rivulet shape formed from these
unstable fingers and the effect on the rivulet shape of factors such as normal body
force (Moyle, Chen & Homsy 1999; Eres, Schwartz & Roy 2000; Diez & Kondic
2001; Kondic & Diez 2001). It was shown theoretically by Grigoriev (2003), and
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experimentally by Garnier, Grigoriev & Schatz (2003), that the fingering instability
can be suppressed by use of feedback control using thermal manipulation of the film.

Two different methods are frequently used in theoretical and computational work
to regulate the singularity at the moving contact line – local slip near the contact
line and introduction of a precursor film in front of the contact line. Spaid & Homsy
(1996) compare results using the precursor film approach and a local slip approach
and show that the theoretical fingering instability predictions are not sensitive to the
method used to remove the contact-line singularity. Davis & Troian (2004) show that
predictions for both modal and non-modal linear stability analyses for shear-driven
films yield the same film profiles and dispersion curves for cases with precursor film
and local slip regularization of the singularity. Moyle et al. (1999) report nonlinear
computations with the local slip approach which indicate that the rivulet shape is
not sensitive to the value of the slip parameter and that the computed rivulet shape
using both simple local slip and precursor film models is in good agreement with
experimental results. However, a comparison study by Diez, Kondic & Bertozzi (2000)
shows that the precursor film method is more computationally efficient than the local
slip method since it yields a stable computation with much larger values of the time
step.

The vast majority of the literature on driven liquid films deals with homogeneous
surfaces, whereas real surfaces exhibit a variety of heterogeneities, caused by variation
in chemical composition (e.g. due to surface oil deposition) or surface roughness,
which lead to spatial variation in static contact angle. The literature dealing with film
dynamics on heterogeneous surfaces is sparse compared to that for homogeneous
surfaces. An early study that examined the effect of variation in static contact angle
on thin-film flows is reported by Greenspan (1978), who used the lubrication theory
with local slip near the contact line to model motion of small droplets on surfaces
with variable static contact angle. Greenspan reports that the advancing contact
line is drawn toward regions with smaller contact angle and recedes from regions
with relatively greater contact angle. Schwartz (1998) proposed that the precursor
film method can be used to study problems with variable static contact angle by
addition of a disjoining pressure at the liquid–gas interface, where the coefficient of
the disjoining pressure is related to the local static contact angle. As discussed by de
Gennes (1985), the disjoining pressure is related to van der Waals forces and other
forces that occur when two surfaces are positioned close to each other. Schwartz
(1998) then used this model to investigate the effect of static contact angle variation
on droplet hysteresis by simulating a spreading droplet over an array of contamination
‘spots’, modelled by regions of variable static contact angle. Because this work was
concerned with contact angle hysteresis, the contamination spots were selected to be
relatively small, with contamination spot radius measuring approximately 5 %, and
spot separation distance approximately 40 %, of the upstream liquid-layer thickness.
Because of the small length scales used in the study, no rivulet formation due to the
surface heterogeneity was observed. A similar numerical model was used by Schwartz
& Eley (1998) to examine the bifurcation of a droplet placed on a surface with strong
contact angle variation.

The disjoining pressure term developed by Schwartz (1998) was used by Marshall &
Wang (2005) in a study of the effect of surface heterogeneity on fingering of a driven
liquid film. Simulations of passage of a driven film front over isolated contamination
spots of various sizes indicate that finger development is predicted well by the growth
rate and length scale of the fastest-growing perturbation from the linear theory.
However, in the case of an array of contamination spots, the spot separation distance
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can impose a certain wavelength on the finger-like film perturbations. Several cases
are recorded where the driven film exhibits large-scale finger growth as the front
passes through an array of spots under conditions (length scale or normal gravity
condition) for which the film front is stable according to linear stability theory.

For natural surfaces, contamination and roughness variation occur not in ordered
arrays, but rather in a random manner. The current study builds on the work of
Marshall & Wang (2005) by examining finger development on a driven film for
heterogeneous surfaces, both with static contact angle set according to a random
function, which is parameterized by the correlation length and variance of the static
contact angle relative to its mean value, and with an ordered static contact angle
variation along strips that are aligned with the flow. The case with random static
contact angle might model the effects of surface contaminants in natural materials,
whereas the case with ordered static contact angle variation on strips might be typical
of an engineered material specifically intended to control the fingering instability.
Related engineered surfaces were introduced in a computational study by Kondic
& Diez (2002), who examined the effect of grooves in the substrate surface on the
fingering instability, and in an experimental study by Kataoka & Troian (1999), who
examined the effect of surface heating along vertical strips on the fingering instability
for a film driven by thermal-induced surface tension gradients.

The paper is organized as follows. Section 2 gives a summary of the theory and
computational method used in the study. Section 3 provides a detailed validation for
the use of disjoining pressure as a method for setting static contact angle by comparing
predictions of the method with the Tanner–Hoffman–Voinov (THV) formula for
dynamic contact angle with different values of the precursor film thickness (Hoffman
1975; Voinov 1976; Tanner 1979). We note that although reasonable predictions seem
to have been obtained by previous studies using disjoining pressure in precursor film
models for problems with variable static contact angle, a detailed validation study
of this method has not previously been reported. We also propose an extension
of the disjoining pressure model in this section to yield results that are consistent
with the THV formula for finite values of the precursor film thickness. Section 4
examines the fingering instability for problems with streamwise strips of different
static contact angle. Section 5 examines the effect of the correlation length scale on
fingering instability and rivulet formation for problems with random static contact
angle variation. Conclusions are given in § 6.

2. Computational model
2.1. Governing equations and solution method

The current numerical study employs the lubrication theory, which assumes low film
Reynolds number and small interface slope. Integrating the Stokes equation over
the width of a liquid layer with thickness h(x, t) and making use of the small slope
approximation yields an expression for the liquid flow rate vector Q tangent to the
substrate surface as

Q = − h3

3µ
(∇p̂ − ρg ex), (1)

where p̂ is the liquid pressure at the top surface of the layer, ρ and µ are the
liquid density and viscosity, respectively, ex is the base vector in the direction of
front motion along the plate, g is the acceleration due to gravity, oriented tangent
to the substrate (the x-direction), and h(x, y, t) is the layer thickness. It is assumed
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that the substrate surface is vertical, so that there is no component of gravitational
force normal to the substrate. Substitution of (1) into the depth-integrated continuity
equation ∂h/∂t = −∇ · Q yields the governing equation for liquid layer thickness as

∂h

∂t
= ∇ ·

{
h3

3µ
[∇p̂ − ρg ex]

}
. (2)

The liquid upper-surface pressure can be written as a sum of a capillary pressure
and an additional disjoining pressure term, −Π , as

p̂ = −σ∇2h − Π, (3)

where σ is the surface tension. An expression for Π is given in terms of the ratio of
liquid layer thickness to the constant thickness h∗ of the precursor film by (de Gennes
1985; Schwartz 1998)

Π = B

[(
h∗

h

)n

−
(

h∗

h

)m]
, (4)

where B , m and n are constants such that n > m > 1. The disjoining pressure, −Π ,
is negative for h/h∗ < 1 and positive for h/h∗ > 1, so that the layer thickness is
always forced toward the specified precursor film thickness. This effect becomes
small for h/h∗ � 1. The stability condition for the precursor film requires that
−(dΠ/dh)(h∗) = (n − m)B/h∗ > 0, which is satisfied for all positive values of the
coefficient B . The disjoining pressure is related to a variety of additional forces that
arise when two surfaces are brought in close contact with each other, including
van der Waals and double-layer forces (de Gennes 1985). Van der Waals forces
exhibit a retarded regime for sufficiently small layer thickness, in which Π ∝ h−4,
and a non-retarded regime for larger film thicknesses, in which Π ∝ h−3 (de Gennes
1985). Double-layer and other short-range interfacial forces exhibit disjoining pressure
variation with smaller powers of h, such as h−2 or h−1 (Mohanty 1981). Most previous
computational studies have used (n, m) = (3, 2) owing in part to the good numerical
stability properties exhibited by this choice.

An expression for the constant B in (4) in terms of the static contact angle θE was
derived by Schwartz (1998) using a control-volume analysis near the contact line as

B =
(n − 1)(m − 1)

h∗(n − m)
σ (1 − cos θE). (5)

We show in § 3 that the result (5) is valid for infinitesimally small precursor film
thicknesses, such that h∗ � h∞, but leads to significant deviation from the known
dynamic contact angle law for finite values of the dimensionless precursor film
thickness δ ≡ h∗/h∞ (e.g. for δ =O(0.01)). A modified expression for the B coefficient
is derived in § 3 which yields the correct variation of dynamic contact angle with
static contact angle for δ � 0.1.

We note that, as is common in computation of thin-film flows, the computational
precursor film thickness is often much larger than that of the physical precursor film.
In such cases, the precursor film is used more as a numerical device to regulate the
moving contact-line singularity in computation of the macroscopic film motion than
as a physically accurate model of the microscale processes at the scale of the physical
precursor film. Similarly, although the expression for disjoining pressure resembles
that resulting from van der Waals and double-layer forces, its usage in the current
work is more as a numerical device to set the static contact angle within the context
of the precursor-film model.
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We consider a constant flow rate condition in which the layer thickness approaches
a constant value h∞ far upstream, which provides a characteristic length scale in the
normal (z) direction. The characteristic length scale in the (x, y)-plane tangent to the
substrate is denoted by L and the characteristic time scale is denoted by T = L/U ,
where U is the characteristic contact-line translation speed. Dimensionless variables
are defined as

h′ = h/h∞, x ′ = x/L, y ′ = y/L, t ′ = t/T ,

Π ′ = Πh∞/σδm−1, U ′ = T U/L.

}
(6)

We set the tangential length scale L so as to balance the capillary term and the
driving gravity term in the governing equation for h, which yields ε3 = Bo, where
Bo = h2

∞ρg/σ is the Bond number and ε ≡ h∞/L is the length-scale aspect ratio. The
horizontal length and velocity scalings become L = (σh∞/ρg)1/3 and L/T = ρgh2

∞/3µ.
Substituting (3)–(6) into (2), the dimensionless equation for the liquid-layer thickness
is

∂h

∂t
= −∇ ·

{
h3∇(∇2h) +

δm−1

ε2
h3∇ Π + h3ex

}
, (7)

where for convenience, we have dropped the primes on the dimensionless variables.
Nonlinear computations of liquid-layer evolution are performed by solving (7) using

a second-order ADI method similar to that reported by Witelski & Bowen (2003)
for the lubrication equation. The computations are performed on a rectangular grid
spanning the interval (xmin, xmax) and (ymin, ymax) with uniform grid spacing and subject
to boundary conditions in the x-direction of the form

h(xmin, y) = 1, hx(xmin, y) = 0, h(xmax, y) = δ, hx(xmax, y) = 0. (8a)

The boundary conditions in the y-direction are taken in § 4 to be periodic and in § 5
to be of the homogeneous form

hy(x, ymin) = 0, hyy(x, ymin) = 0, hy(x, ymax) = 0, hyy(x, ymax) = 0. (8b)

2.2. Equilibrium solution and linear stability

An equilibrium solution h0(x − Ut) for the liquid-layer thickness is obtained from
(7) using the convected coordinate ξ ≡ x − Ut , where the dimensionless contact-line
advection speed is obtained as

U = (1 − δ3)/(1 − δ). (9)

Results for the equilibrium layer thickness in gravity-driven flow with δ = 0.05 are
shown in figure 1(a) for cases with values of the static contact angle of θE = 0 and
0.2. There exists a ‘ridge’ in the liquid-layer thickness just before the front, measuring
about 40 % of the upstream liquid-layer thickness for the case with θE = 0 and about
50 % of the upstream layer thickness for the case with θE = 0.2.

Stability of the equilibrium solution is examined for perturbations that are periodic
in the spanwise (y) direction, such that the layer thickness is given by

h(x, y, t) = h0(ξ ) + G(ξ, t) exp(iky), (10)

where k is the spanwise perturbation wavenumber. Substituting (10) into (7) and
linearizing gives a fourth-order differential equation for the perturbation amplitude
G(ξ, t), which is subject to the boundary condition that the perturbations die away far
upstream and far downstream of the front, or G, Gξ → 0 as ξ → ±∞. This equation is
solved numerically for G(ξ, t) using a second-order Crank–Nicolson method similar
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Figure 1. The effect of static contact angle on (a) equilibrium film thickness profile and
(b) instability growth rate β as a function of wavenumber k for a case with δ = 0.05 and static
contact angle θE = 0 (solid curve) and 0.2 (dashed-dotted curve).

to that employed for solving for the equilibrium layer profile h0(ξ ). After the initial
transient dies away, the computed perturbation amplitude is found to approach
a separable form G(ξ, t) → A(ξ )eβt , where A(ξ ) specifies the spatial form of the
eigenfunction and β is the growth rate corresponding to perturbations with spanwise
wavenumber k. In the reported linear stability computations, we set the computational
domain as (−50, 10), with the front occurring at x = 0, and the space and time step as

x =0.0017 and 
t = 0.005. Tests with a grid with half as many points (
x = 0.0034)
and with various different values of 
t and xmin indicate that the root-mean-square
uncertainty in the instability growth rate is less than 0.007, with the greatest sensitivity
due to variation in 
x.

The computed perturbation growth rate β is plotted in figure 1(b) as a function
of wavenumber for cases with precursor film thickness δ = 0.05 with static contact
angle θE =0 and 0.2. (For the θE = 0.2 case, we use the modified disjoining pressure
coefficient B given in (18) and (20).) The liquid-layer front is unstable for dimensionless
wavenumbers below a critical value of kcrit = 0.80, with the most unstable waves
corresponding to a wavenumber of kmax = 0.48. In agreement with Davis & Troian
(2003), we observe an increase in both the peak equilibrium film thickness and the
perturbation growth rate as the contact angle is increased.

3. Validation for dynamic contact angle
3.1. Relationship between static and dynamic contact angles

In this section, we seek to validate our computational model by examining the extent
to which the disjoining pressure expression, (4), together with expression (5) for the co-
efficient B , yield predictions for the dynamic contact angle that are consistent with the
well-known Tanner–Hoffman–Voinov (THV) formula (Hoffman 1975; Voinov 1976;
Tanner 1979). This validation study is performed using a series of two-dimensional
computations with different values of static contact angle θE , Bond number Bo, and
precursor film thickness δ. Both our computations and the experiments of Tanner
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Figure 2. The cube of the dynamic contact angle versus the cube of the static contact angle
for cases with precursor film thickness �, δ = 0.01; �, 0.05; �, 0.1, for (a) Bo= 0.02 and
(b) Bo= 0.002.

(1979) and Hoffman (1975) deal with situations where the contact line is always
advancing, such that the data are not affected by contact-line hysteresis. The computed
contact angle in these computations is determined by fitting a straight line to the part
of the film thickness curve with greatest slope near the region where the film meets
the precursor film. The computed results for dynamic contact angle are compared to
the THV formula, given by

θ3 = θ3
E + DµU/σ, (11)

where D is a constant and U is the contact-line velocity. Defining a scaled contact
angle by θ ′ ≡ θ/ε and using the non-dimensionalization (6) with ε3 = Bo and the
equilibrium solution (9) for U , we can rewrite (11) in the dimensionless form

θ ′3 = C
[
θ ′3
E + A(1 − δ3)/(1 − δ)

]
, (12)

where A and C are constants, such that C = 1 in the THV formula.
It is found in all cases examined that the cube of the computed dynamic contact

angle, θ ′3, varies nearly linearly with the cube of the static contact angle, θ ′3
E . Examples

of this linear relationship are shown in figure 2 for different values of the precursor
film thickness and for Bond numbers of Bo =0.02 and 0.002. The slope of the best-fit
linear relationship is determined by data regression. The effect of grid increment 
x

on the computed slope C in (12) is estimated by performing a series of computations
for a case with δ = 0.01 for different values of
x. Results from this grid resolution
test, shown in figure 3, indicate that the solutions for slope C are converged to within
3.6 % of the asymptotic value for cases with δ/
x � 1.5. A similar result is obtained
for tests with different values of δ. All computations with δ � 0.01 reported in the
remainder of this section are performed with 
x = 0.0067, which corresponds to
δ/
x � 1.5. Computations with δ = 0.005 are performed with the finer grid increment

x = 0.0033, which corresponds to δ/
x = 1.5.

The slope C is plotted as a function of precursor film thickness in figure 4(a) for
Bond numbers of 0.02 and 0.002. The predicted slopes C for the two different Bond
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Figure 3. The effect of grid increment 
x on the computed slope C in (12) for a case with
δ = 0.01 for Bo= 0.02.
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Figure 4. (a) Slope C from (12) and (b) relative error estimate 1 − C1/3 in dynamic contact
angle for �, Bo= 0.02; �, Bo=0.002, as a function of precursor film thickness δ.

number cases are nearly identical. It is observed that the slope deviates significantly
from unity for finite precursor film thicknesses, but seems to approach unity as δ → 0.
The relative error in dynamic contact angle is approximately 1−C1/3, which is plotted
as a function of δ in figure 4(b). These results indicate that the disjoining pressure
expression (4)–(5) yields quantitative agreement with the classical THV dynamic
contact angle formula for δ � 0.01 with a relative error in the contact angle of less
than 5 %.

This validation study was repeated using the choice (n, m) = (4, 3), and the predicted
slope C and relative error 1−C1/3 are compared with predictions of the (n, m) = (3, 2)
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Figure 5. (a) Slope C from (12) and (b) relative error 1 − C1/3 for �, (n,m) = (3, 2); �, (4, 3).

case in figure 5, with Bond number of 0.02. The results indicate that the pair (4, 3)
yields predictions significantly closer to the THV formula than the pair (3, 2) for
a given value of δ; however, the computations are also significantly more prone to
numerical instability. The reason for increase in accuracy for the choice (4, 3) over
the choice (3, 2) is explained in the next section.

In addition to the above study of the equilibrium dynamic contact angle, we
examined the transient response of the dynamic contact angle when the static contact
angle is changed from one constant value to another. This test is performed by first
allowing the film to attain an equilibrium form with a static contact angle θE =0.1.
The computation is stopped and then restarted with a new static contact angle
θE = 0.25. The time variation of the dynamic contact angle following this sudden
change in static contact angle is plotted in figure 6 for cases with δ = 0.01, 0.05 and
0.1. When scaled by the final dynamic contact angle (for θE = 0.25), the curves with
different δ nearly collapse onto each other, which indicates that the characteristic
response time of the dynamic contact angle upon a change in the static contact angle
is nearly independent of precursor film thickness.

3.2. Modified expression for the disjoining pressure coefficient B

In this section, we derive an extension of the expression (5) for the disjoining pressure
coefficient B which, with one empirically determined function, yields values of the
slope C close to unity for values of δ as large as 0.1. Following Schwartz (1998),
we examine a control volume (shown in figure 7) encompassing the region around the
contact line, where the liquid film approaches the precursor film. On the left-hand
side of this control volume (A), the film thickness has a value h0, at which point
the interface is assumed to approach a straight line with inclination angle θE . On
the right-hand side of the control volume (B), the liquid film asymptotes to the
precursor film, such that h = h∗ and the inclination angle vanishes. We further assume
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Figure 7. Control volume used in analysis to determine expression for disjoining pressure
coefficient B .

that h0 is sufficiently large compared to h∗ that terms of O(h∗/h0)
2 and higher are

negligible. Unlike Schwartz, however, we retain terms of O(h∗/h0). Based on these
assumptions, the second derivative ∂2h/∂x2 at A vanishes and the value of disjoining
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pressure at A varies as O(h∗/h0)
m, which is negligible for m � 2, so that from (3) the

interfacial pressure in the liquid at A vanishes. Similarly, both the gradient of h and
the disjoining pressure vanish at B, so the pressure must also vanish at B.

Integrating the liquid interfacial pressure from A to B yields

0 =

∫ h0

h∗
p̂(h) dh = σ

∫ h∞

h∗
sec3 θ

(
∂θ

∂s

)
dh −

∫ h∞

h∗
Π dh, (13)

where we have used ∂h/∂x = tan θ and ∂2h/∂x2 = −sec3θ(∂θ/∂s) and s is the arclength
along the interface. Noting that dh/ds = −sinθ , we can rewrite this as

0 = −σ

∫ θE

0∗
(sin θ)(sec3 θ) dθ −

∫ h∞

h∗
Π dh. (14)

Performing the indicated integration and using (4) yields

0 = 1
2
σ tan2 θE − Bh∗

[
n − m

(m − 1)(n − 1)
− F

]
, (15)

where we define

F ≡ − 1

n − 1

(
h∗

h0

)n−1

+
1

m − 1

(
h∗

h0

)m−1

. (16)

For the common choice (n, m) = (3, 2), we have from (16) that

F ≡ h∗

h0

+ O

(
h∗

h0

)2

. (17)

If δ is sufficiently small, there might exist some value h0 � h∞ such that h∗/h0 � 1 and
the factor F in (17) can be neglected; however, for values of δ that are small, but not
infinitesimal, this factor must be retained. We note that for the choice (n, m) = (4, 3),
(16) indicates that F ≡ O(h∗/h0)

2, so we would expect significantly less error for finite
values of h∗/h0. The results in figure 5 indeed indicate that this is the case.

Solving for B from (15) yields

B = f
σ (m − 1)(n − 1)

2h∗(n − m)
tan2 θE, (18)

where we define

f ≡
[
1 − F (m − 1)(n − 1)

(n − m)

]−1

. (19)

The expression (18) reduces to the expression (5) given by Schwartz (1998) to within
O(θ4

E) for the case with f = 1. However, we note that the factor F in (17) is subject
to the lower bound F � δ, since h0 must be less than h∞, which for the popular case
(n, m) = (3, 2) yields a restriction for the coefficient f as f � 1/(1 − 2δ). For δ in the
interval 0.01 � δ � 0.1, the lower bound for f varies from 1.02 to about 1.25, which
could lead to significant differences with predictions obtained using the expression (5).

In order to estimate the coefficient f in (19), we assume that the ratio h∗/h0, and
hence the factor f , can be expressed as a function of δ. To check this assumption, we
repeat the plots of θ ′3 versus θ ′3

E and confirm that these plots are still linear for f �= 1.
For instance, figure 8 exhibits approximately linear variation of θ ′3 with θ ′3

E for a case
with δ = 0.05 for both f = 1 and f = 1.55, where the latter value of f (corresponding
to h∗/h0 = 0.25) yields C =1 in (12), in agreement with the THV formula. The value
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Figure 9. The values of the coefficient f (δ) that yield slope C = 1 in (12) �, along with the
best fit polynomial expression given in (20).

of the coefficient f was similarly determined for each value of δ so as to make the
slope C = 1, and the resulting values of f are plotted in figure 9. A polynomial fit to
this data, given by

f (δ) = 1 + 6.069δ + 161.7δ2 − 1547δ3 + 5890δ4, (20)

is plotted as a solid curve in figure 8. By selecting the coefficient f in accordance
with the formula (20) and making the grid sufficiently fine to satisfy the restriction
δ/
x � 1.5, we find that the dynamic contact angle varies in a manner consistent with
the well-known THV formula when subjected to a change in static contact angle for
values of δ up to 0.1.
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Figure 10. Contours of static contact angle for ordered strips with wavelength (a) λ= 6,
(b) 7, (c) 13 and (d) 24. Grey shading indicates θE > 0.3 and black shading indicates θE < 0.1.

4. Results for static contact angle variation with ordered streamwise strips
The computational method described above is used in this section to examine

the effect of streamwise strips of varying contact angle on the development of the
fingering instability of a driven liquid film. The computation is performed with
periodic boundary conditions in the y-direction and static contact angle variation
given by

θE(y) = θE,0(1 + ε sin(2πy/λ)], (21)

with θE,0 = 0.2 and ε = 0.9. Static contact angle patterns are shown in figure 10 for
cases with λ= 6, 7, 13 and 24. From figure 1(b), we find that the film front is stable for
perturbations with λ=6 and 7 (with growth rates β = −0.49 and −0.14, respectively),
close to the most unstable case with λ= 13 (β = 0.24), and unstable with λ=24
(β = 0.14).

The computations are performed with grid spacing 
x =
y = 0.03 and precursor
film thickness δ = 0.05, yielding δ/
x = 1.67. The tests reported in § 3 indicate that
the dynamic contact angle is nearly grid-independent for δ/
x � 1.5. The time step
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Figure 11. The effect of numerical resolution and precursor film thickness on the growth of
a rivulet for a case with λ= 16 at time t = 15 for the three cases: (a) 
t = 0.005, 
x = 0.03,
δ = 0.05; (b) 
t = 0.0025, 
x = 0.01, δ = 0.05; and (c) 
t = 0.0025, 
x =0.01, δ = 0.03. Eight
contours of film thickness are plotted in the interval h = (0.7, 1.3), with grey shading for
h > 1.3.

was 
t =0.005, and the total number of points was over 10 million. Results of a
study of the effect of grid resolution and of the precursor film thickness on the rivulet
development are given in figure 11, where we show contours of the film thickness for
three different cases at time t =15 and with strip wavelength λ= 16. The case shown
in figure 11(a) corresponds to the numerical parameters used in the remainder of the
computations (
x = 0.03, 
t = 0.005, δ = 0.05). A case with the same precursor film
thickness but twice the grid spacing and twice the time step is shown in figure 11(b)
(
x = 0.01, 
t = 0.0025, δ = 0.05). A case with the same grid and time step sizes as
in figure 11(b), but with a smaller precursor film thickness (δ = 0.03) is shown in
figure 11(c). We observe that the cases with different numerical resolution, but the
same precursor film thickness, in figures 11(a) and 11(b) exhibit very similar contours
of film thickness. The case with smaller precursor film thickness in figure 11(c)
exhibits slightly delayed growth and less pronounced fluctuations in the wake region
behind the rivulet, but otherwise has similar shape and overall development. Since
the fingering growth rate is known to be dependent on the value of the precursor film
thickness (Kataoka & Troian 1997), it is not surprising that cases with different δ

exhibit slight differences. However, in the range of δ used in the study, these differences
clearly do not affect the qualitative film dynamics.
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Figure 12. Contour plots of film thickness for cases with (a) λ= 6, (b) 7, (c) 13, and (d) 24, at
times (i) t = 12, (ii) 24 and (iii) 33. (Time proceeds from left to right.) Contour lines are drawn
for h = 0.2, 0.6, 1 and 1.4, with grey shading used for h > 1.4.

Contours of the film thickness are presented in figure 12 for the four values of λ
given in figure 10, at times t =12, 24 and 33. The different cases exhibit a number of
interesting behaviours. Case (a) is well into the stable range, with β = −0.49, and thus
develops only small-amplitude waves at the strip wavelength, λ=6, which do not grow
in time. However, as the front progresses downstream, these short waves merge to
form waves with twice the wavelength. These longer waves are unstable according to
linear theory and grow into rivulets by the end of the computation. A similar merger
of neighbouring fingers was observed experimentally by Kataoka & Troian (1999) in
their study of thermally driven films along parallel heated strips for a case with strip
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width smaller than the critical width for the fingering instability. Case (b) is also for
a wavelength which is stable according to linear theory (with β = −0.14). However,
we nevertheless observe that waves with wavelength λ= 7 grow and develop into
long thin rivulets. This type of subcritical instability, caused by nonlinear interactions
forced by the surface imhomogeneities, was also observed by Marshall & Wang (2005)
in computations with arrays of spots with different contact angle.

For Case (c), the wavelength is close to the most unstable wavelength, and we
observe the expected rivulet growth at a wavelength corresponding to the strip
wavelength. The length of the rivulets at the end of the computation is longest for
this case, compared to any of the other cases examined, as would be expected. Case (d)
is also unstable, but the strips are for a wavelength of about twice the most unstable
wavelength. We initially observe the growth of perturbations with both the strip
wavelength (λ= 24) and half the strip wavelength (λ= 12), which is close to the most
unstable wave. The resulting structure in figure 12(d)(ii) looks rather like a rivulet
with two heads located in each low contact-angle strip. These two heads eventually
merge together, such that by the end of the computation (figure 12d(iii)) only a
single rivulet head is evident in each strip. The forcing due to the strips of variable
contact angle cause a type of lock-on phenomenon in this flow, leading to eventual
growth of rivulets at the strip (or forcing) wavelength rather than the most unstable
wavelength of the linear instability theory. This phenomenon is analogous to the
lock-on phenomenon observed for other forced nonlinear vibration problems, such
as for the problem of flow past a vibrating cylinder in which vortices are observed
to shed into the cylinder wake at the cylinder vibration frequency rather than at the
natural shedding frequency (Williamson & Govardhan 2004).

The maximum value of the change in film thickness, 
hmax(t) ≡ max
x,y [h(x, y, t) −

h0(x, t)], is plotted versus time for these four cases in figure 13. All cases exhibit a
rapid initial transient. In the two cases that are linearly stable (figures 13a and 13b),
there is no linear part of the curve and the initial transient continues until the film
saturates at a nearly constant film thickness within the ‘head’ region of the rivulet.
In figure 13(a), there is jump in the maximum film thickness starting at about t = 18,
which corresponds to the effect of merger of neighbouring stable perturbations to
form unstable fingers with twice the wavelength. The two cases that are linearly
unstable (figures 13c and 13d) both exhibit nearly linear growth in film thickness
before saturating to a nearly uniform value. The growth rate predicted from the
linear theory for a homogeneous surface is indicated by the slope of the dashed line
in each of these figures for the corresponding value of λ. In both cases, we observe
that the film thickness grows somewhat faster than the prediction of linear theory
owing to the forcing from the surface contact angle variation.

Figure 14 shows the maximum value of film thickness on a line y = const as a func-
tion of y for the same three times as shown in figure 12. The merger of neighbouring
waves is evident from the wavelength doubling of the perturbations in figure 14(a)(iii).
Cases with λ=7 and 13 both reach an asymptotic film thickness fairly early, which
does not change significantly as the rivulet grows in length. The case with λ= 24
exhibits two peaks within each contact angle strip, with a deep trough in film thickness
in-between the two peaks. The film thickness increases substantially following the
merger of these two rivulets (figure 14d(iii)).

Behind the rivulet front there remain strips with variable film thicknesses corres-
ponding to the strips in static contact angle. Both the film thickness and the liquid
flow rate vary nearly sinusoidally as one traverses across these strips, with thicker
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Figure 13. Maximum value of the change in film thickness as a function of time for the four
cases shown in figure 12. The slope of the dashed line shows the predicted growth rate from
linear stability theory for perturbations with wavelength λ. The linear stability theory predicts
cases (a) and (b) are stable.

λ 6 7 13 24

C(
h, 
θE) −0.965 −0.934 −0.822 −0.670
C(Q, 
θE) −0.962 −0.930 −0.83 −0.67
C(
h, Q) 0.997 0.998 0.997 0.993
rms(h) 0.050 0.064 0.057 0.026
rms(Q) 0.145 0.185 0.163 0.075

Table 1. Correlations and root-mean-square variations of h and Q behind the rivulet front
for cases with strips of variable static contact angle at t = 33.

strips corresponding to larger flow rate. At time t = 33, we present in table 1 the
correlations between film thickness, flow rate and static contact angle for the region
behind the rivulet front (corresponding to x < 20, x < 5, x < 8 and x < 10 for cases
with λ=6, 7, 13 and 24, respectively), as well as the root-mean-square (rms) values of
the film thickness and flow rate in this region. The film thickness and the flow rate
are nearly perfectly correlated. The static contact angle and the film thickness exhibit
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Figure 14. The maximum value of film thickness on a line y = const as a function of y for
the four cases and at the same times (i)–(iii) as shown in figure 12.

a strong negative correlation, with the strongest negative correlation for the smallest
values of λ. In general, regions with large static contact angle have a thinner liquid
film and smaller liquid flow rate than do regions with relatively smaller static contact
angle. The root-mean-square variation in the region behind the rivulet front, due to
the variation in static contact angle, is between 2.5 and 6.5 % of h and between 7 and
19 % of Q.
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Figure 15. Contours of the static contact angle on random surfaces generated using correla-
tion lengths (a) �= 6, (b) 13 and (c) 24. Grey shading indicates θE > 0.26 and black shading
indicates θE < 0.16.

5. Results for random static contact angle variation
In order to mimic the heterogeneity typical of natural surfaces, we seek a random

function with which to specify variation of the static contact angle. Even on a random
surface, however, the variation of a function on the surface can be characterized
in terms of one or more dominant length scales and the variance of the function
autocorrelation. To examine the effect of surface heterogeneity on contact line stability
and fingering typical of natural surfaces, we implemented a method developed by
Hu & Tonder (1992) for generation of a two-dimensional random function φ(x, y).
The value of the function φ(x, y) varies over the interval (−1, 1) with standard
deviation γ =0.245 and autocorrelation given by

R(x, y) = γ 2 exp[−π{(x/�)2 + (y/�)2}], (22)

where � is the correlation length. The static contact angle was then set using the
random function φ(x, y) by

θE(x, y) = θE,0[1 + εφ(x, y)], (23)

where the average contact angle θE,0 = 0.2 and the amplitude ε = 0.9. The resulting
distribution for static contact angle θE(x, y) varies over the interval (0.02, 0.38) with
standard deviation 0.044. Samples of random surfaces generated with correlation
lengths of � =6, 13 and 24 are shown in figure 15.

In the current computations, the homogeneous boundary conditions, (8b), are used
in the y-direction and all other numerical parameters are the same as reported for the
strip computation in § 4. Computations were performed for the three static contact
angle fields shown in figure 15. Contours of film thickness for these three computations
are shown in figure 16 at times t = 12, 24 and 33. Plots of maximum change in film
thickness versus time are shown in figure 17, and plots of maximum film thickness
on lines with y = const are plotted versus y in figure 18. We observe much less
dependence on static contact angle in the random surface computations than was
reported for the surfaces with contact angle variation in strips in § 4. Rivulets grow
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Figure 16. Contour plots of film thickness for cases with (a) �= 6, (b) 13, and (c) 24, at times
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Figure 17. Maximum value of the change in film thickness as a function of time for the three
cases shown in figure 16. The dashed line indicates the slope predicted by linear stability theory
for the most unstable perturbation (k = 0.48).
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Figure 18. Plot showing the maximum value of film thickness on a line y = const as a function
of y for the three cases shown in figure 16. Results are given for - - -, t = 12; –·–, 24; —, 33.

λ 6 13 24

C(
h, 
θE) −0.324 −0.256 −0.191
C(Q,
θE) −0.249 −0.230 −0.168
C(
h, Q) 0.947 0.978 0.974
rms(h) 0.011 0.0072 0.0056
rms(Q) 0.035 0.022 0.017

Table 2. Correlations and root-mean-square variations of h and Q behind the rivulet front
for cases with random variation in static contact angle at t = 33.

in all three cases exhibited with about the same spacing, with mean value that seems
to correspond well with the most unstable wavelength from linear theory, although
with significant random variation about this mean spacing. While the mean rivulet
spacing and length is about the same for all three cases, the case with the largest
correlation length exhibits significantly more variation about the mean than does the
case with the smallest correlation length. The rivulet growth rate is also nearly the
same in all three cases, and is found to be slightly less than that of the most unstable
wave from the linear theory, which is indicated by a dashed line in figure 17.

Behind each rivulet we observe a streak of fluid with slightly thicker film thickness,
which marks the path that the rivulet has taken. Although these paths exhibit slight
irregularities, they are for the most part straight, showing that the rivulets do not me-
ander significantly owing to surface heterogeneity. Correlations between film thickness,
liquid flow rate, and static contact angle in the region behind the rivulet front (x < 25)
are recorded in table 2 for cases with random static contact angle variation at t = 33.
As in the case discussed in § 4, we observe strong correlation between h and magnitude
Q of the flow rate. However, the negative correlation between film thickness and static
contact angle is much weaker than for the case with ordered strips of different static
contact angle. Similarly, the root-mean-square values of h and Q are nearly an order
of magnitude lower for the case with random static contact angle variation than for
the case with ordered strips, even though the maximum and minimum values of the
static contact angle are nearly the same for both cases. The main difference between
the case of random contact angle examined in this section and that of ordered strips
is that for the ordered strips, a liquid particle primarily sees one static contact angle it
advects in the streamwise (x) direction. By contrast, for the case with random contact
angle, a liquid particle sees a wide variety of static contact angles as it is advected by
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the driving force. Consequently, the liquid film might start to grow thicker in a region
of lower static contact angle, and then be driven into a region of larger static contact
angle, in which it seeks to grow thicker. The constant change in static contact angle
along the fluid pathline keeps the change in film thickness relatively smaller than for
the ordered strip case and reduces the correlation between film thickness and static
contact angle owing to the dependence of the film thickness on the history of the
contact angle along the pathline.

6. Conclusions
The paper examines the effect of surface heterogeneity, as manifested by spatial

variation of the static contact angle, on the dynamics of a driven liquid film. The
static contact angle is controlled by a coefficient in the disjoining pressure term. We
have shown that for sufficiently small values of the precursor film thickness (δ < 0.01)
and for sufficiently small grid increment (δ/
x � 1.5), this method for varying static
contact angle yields predictions for dynamic contact angle that approach the values
given by the classical Tanner–Hoffman–Voinov formula. Significant difference with
this formula is observed for finite values of precursor film thickness; however, we have
traced this difference back to an assumption in the derivation of the expression for the
disjoining pressure coefficient and have shown how this coefficient can be corrected to
yield close agreement with the Tanner–Hoffman–Voinov formula for finite values of
the precursor film thickness. In addition to the study of equilibrium dynamic contact
angle, the transient response of the dynamic contact angle is examined when the static
contact angle is changed from one constant value to another constant value. We find
that the characteristic response time of the dynamic contact angle following a change
in the static contact angle is nearly independent of precursor film thickness.

The computational method is used to examine the effect of various patterns of
surface heterogeneity on the development of the fingering instability of a driven
liquid film, including streamwise strips of varying static contact angle and random
variation of static contact angle. For cases with ordered strips of different static
contact angles, the computations indicate that cases with λ greater than the critical
wavelength from the linear stability theory develop perturbations at the strip spacing
length, which over time grow into rivulets. The maximum film thickness initially
increases until it saturates to a constant value as the rivulet forms. For cases with
strip spacing distance λ that are much smaller than the critical wavelength for linear
instability, a wavy pattern develops on the driven front with wavelength corresponding
to the strip spacing. This wavy pattern advects in the streamwise-direction without
significant growth until neighbouring waves merge, forming rivulets that grow with a
wavelength twice that of the strip spacing. For values of strip-spacing distance slightly
less than the critical value for linear instability, a subcritical instability is observed
wherein rivulets form and grow owing to nonlinear effects driven by forcing from the
surface heterogeneities. When the strip spacing is much larger than the most unstable
wave from linear theory, we observe multiple rivulets to form initially in each strip at
close to the most unstable wavelength from linear stability theory, where these fingers
later merge to form rivulets whose wavelength equals that of the strip spacing. Some
of these same effects have also been observed for films driven over grooved surfaces
(Kondic & Diez 2002).

We also examine fingering and rivulet development on three surfaces with random
static contact angle variation, but with different correlation lengths. These cases all
exhibit rivulet formation with about the same mean spacing and length, both of which
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are roughly equal to what would be predicted for the fastest-growing wave from the
linear theory. However, cases with large correlation length exhibit significantly more
variation around the mean rivulet spacing and length than do cases with small
correlation length.

The paper demonstrates that the precursor film method with disjoining pressure
can be used for accurate prediction of film dynamics problems with variable contact
angle. We find that engineered surfaces with strips of contact angle variation can have
a significant influence on the film dynamics and the spacing of the rivulets, in some
cases inducing rivulets to form with a spacing that is prohibited by linear theory. We
find that random variation in contact angle has a much milder effect on the rivulet
development than do streamwise strips. However, limitations of the numerical model
did not allow us to extend the computations to cases with very large contact angle
variation, for which the effect of the random contact angle patterns may have been
more pronounced.
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Research under grant number NAG3-2368. Dr Charles Neiderhaus is the project
monitor.
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